From RHIC to EIC At the QCD Frontiers

This meeting will be held virtually. June 7–10, 2022

Investigations on Collectivity and Baryon Junction Conjecture in Ultra-Peripheral Heavy-Ion Collisions

Wenbin Zhao

Wayne State University

Collaborator: Chun Shen and Björn Schenke

June 7, 2022 RHIC/AGS

"Collectivity" in UPC

Taken from Nicole Lewis's slide

 UPCs have a similar order of magnitude and trends of collectivity as other previously measured hadronic systems

ATLAS Phys. Rev. C 104, 014903 (2021). Y. Shi, etc.al, Phys. Rev. D 103, 054017 (2021).

Hydrodynamic simulation of UPC

C. Shen and B. Schenke Phys. Rev. C 97, 024907 (2018). W. Zhao, C. Shen and B. Schenke [arXiv:2203.06094].

3DGlauber + MUSIC + UrQMD

- 3D-Glauber + MUSIC + UrQMD works well in describing various soft observables from low energies to high energies.
- Nucleon's pdf peaks around x~0.33, vector meson's pdf peaks at x~0.5.
 - C. Shen and B. Schenke, [arXiv:2203.04685 [nucl-th]].
 - C. Shen and B. Schenke Phys. Rev. C 97, 024907 (2018).
 - W. Zhao, C. Shen and B. Schenke [arXiv:2203.06094].

Kinematics

Physics Reports 458 (2008) 1-171

The physics of ultraperipheral collisions at the LHC

A.J. Baltz^a, G. Baur^b, D. d'Enterria^c, L. Frankfurt^d, F. Gelis^e, V. Guzey^{f,w}, K. Hencken^{g,h,1}, Yu. Kharlovⁱ, M. Klasen^j, S.R. Klein^k, V. Nikulin¹, J. Nystrand^m, I.A. Pshenichnov^{n,o}, S. Sadovskyⁱ, E. Scapparone^p, J. Seger^q, M. Strikman^{r,*,1}, M. Tverskoy¹, R. Vogt^{k,s,t,1}, S.N. White^a, U.A. Wiedemann^u, P. Yepes^{v,1}, M. Zhalov¹

- Based on the photon flux distribution, we get the distribution of center-of-mass energies of γ^* +nucleus collisions.
- Because of the unequal energies of incoming nucleus and γ^* in the lab frame, we need to do a global rapidity shift from center-of-mass frame to lab. frame.

$$\Delta y = y_{\text{beam},\sqrt{s_{\gamma^*N}}} - y_{\text{beam},\sqrt{s_{NN}}}$$

For example, in $\gamma^* + Pb$ with $\sqrt{s_{\gamma^*N}} = 894$ GeV, $\Delta y = 1.756$ in the Pb-going direction;

A. J. Baltz, Phys. Rept. 458, 1 (2008). W. Zhao, C. Shen and B. Schenke [arXiv:2203.06094].

Multiplicity and mean p_T

- 3D-Glauber + MUSIC + UrQMD with fluctuating $\sqrt{s_{\gamma^*N}}$ describes the shape of $dN_{ch}/d\eta$ in γ^* +Pb.
- The $dN_{ch}/d\eta$ of γ^* +Pb shows strong violation of longitudinal boost-invariance.
- Clear mass hierarchy of the $< p_T > \text{ of } \pi$, K and P is calculated in γ^* +Pb and p+Pb.

W. Zhao, C. Shen and B. Schenke [arXiv:2203.06094]. C. Shen and B. Schenke, [arXiv:2203.04685 [nucl-th]].

v_n {2} in γ^* +Pb and p+Pb

- 3D-Glauber + MUSIC + UrQMD describes the v_2 {2} and $v_2(p_T)$ in γ^* +Pb and p+Pb well.
- The v_2 hierarchy between p+Pb and $\gamma*+$ Pb is reproduced by our model calculations.
- v_3 is not well described in γ^* +Pb.

W. Zhao, C. Shen and B. Schenke [arXiv:2203.06094]. C. Shen and B. Schenke, [arXiv:2203.04685 [nucl-th]].

v_2 hierarchy between γ^* +Pb and p+Pb

• ε_2 are very similar between γ^* +Pb and p+Pb.

W. Zhao, C. Shen and B. Schenke [arXiv:2203.06094].

• The longitudinal flow decorrelation is stronger in the γ^* +Pb than p+Pb, resulting in the v_2 hierarchy between γ^* +Pb and p+Pb .

Photon virtuality dependence of flow

The transverse positions of the partonic participants are sampled from a 2D Gaussian $P(x,y) \propto exp[-\frac{x^2+y^2}{2}Q^2]$

- Hydro: larger transverse space for the geometry allows more fluctuations and the v_2 are larger.
- CGC: Larger number of independent domains leads to lower v_2 .
- Hydro predicts the opposite trend with Q^2 than the CGC W. Zhao, C. Shen and B. Schenke [arXiv:2203.06094]. Y. Shi, etc.al, Phys. Rev. D 103, 054017 (2021). B. D. Seidlitz. QM2019.

Probing Baryon Junction Structure

Baryon Junction Structure picture

D. Kharzeev, Phys.Lett. B 378, 238–246 (1996). J. D. Brandenburg, eta. al [arXiv:2205.05685 [hep-ph]].

C. Shen and B. Schenke, [arXiv:2203.04685]. W. Zhao, C. Shen and B. Schenke [arXiv:2203.06094].

Baryon junction in 3DGlauber

Time arrow

Initial baryon charge distributes towards center of the strings, instead at the string ends

$$P(y_{P/T}^B) = (1 - \lambda_B)y_{P/T} + \lambda_B \frac{e^{(y_{P/T}^B - (y_P + y_T)/2)/2}}{4\sinh((y_P - y_T)/4)}.$$

String ends

toward the mid-rapidity

 y_{CM}

C. Shen and B. Schenke, [arXiv:2203.04685]. D. Kharzeev, Phys.Lett. B 378, 238–246 (1996). W. Zhao, C. Shen and B. Schenke [arXiv:2203.06094].

dN/dy of net-proton in Au+Au

- Baryon junction is essential for dN/dy of net-p at mid-rapidity in Au+Au.
- 3DGlauber+MUSIC+UrQMD with λ_B =0.2 well reproduce the dN/dy of net-protons in Au+Au at RHIC.

dN/dy of net-proton in UPCs

- Larger λ_B generates larger dN/dy of net-proton at γ^* side.
- At high energy collisions, dN/dy of net-p is sensitive to λ_B . For UPC in Pb+Pb at $\sqrt{s_{NN}}$ =5.02 TeV, dN/dy of λ_B =1.0 is two orders larger than that of λ_B =0.0 at y=2.0.
- λ_B =0.0, dN/dy of net-proton are from nucleus fragmentation only.

C. Shen and B. Schenke, [arXiv:2203.04685]. W. Zhao, C. Shen and B. Schenke [arXiv:2203.06094] and in preparation.

Summary

- We carried out the first dynamical (3+1)D hydro simulations that quantitatively study the collectivity in p+Pb and ultra-peripheral Pb+Pb collisions at LHC energies
- Different longitudinal flow decorrelation results in smaller v_2 in $\gamma*+Pb$ collisions compared to p+Pb collisions in a given multiplicity bin.
- The v_2 of $\gamma*+Pb$ collisions increases with the decreasing virtualities of photons in the hydro framework, which is qualitatively different with results from the CGC.
- UPCs provide the golden probe to baryon junction structure. At LHC energies, dN/dy of net-p in $\gamma*$ side is very sensitive to the initial baryon charge generation mechanism.
- Our work bridges the phenomenological studies of collectivity and baryon production in relativistic heavy-ion collisions with future electron+nucleus collisions.

Thanks for Your Attention!

Back Up

$dN_{ch}/d\eta$

$v_n\{2\}$ at different $\sqrt{s_{\gamma^*N}}$

Double ratio of net-protons

$s_{\gamma N}$ for UPC

Available online at www.sciencedirect.com

Physics Reports 458 (2008) 1-171

In the lab frame, photon flux decreases exponentially above

 $k_{max} \approx \gamma \hbar c/R_A$

The physics of ultraperipheral collisions at the LHC

A.J. Baltz^a, G. Baur^b, D. d'Enterria^c, L. Frankfurt^d, F. Gelis^e, V. Guzey^{f,w}, K. Hencken^{g,h,1}, Yu. Kharlovⁱ, M. Klasen^j, S.R. Klein^k, V. Nikulin¹, J. Nystrand^m, I.A. Pshenichnov^{n,o}, S. Sadovskyⁱ, E. Scapparone^p, J. Seger^q, M. Strikman^{r,*,1}, M. Tverskoy¹, R. Vogt^{k,s,t,1}, S.N. White^a, U.A. Wiedemann^u, P. Yepes^{v,1}, M. Zhalov¹

In the lab frame, the four momentum vectors of γ and nucleon, $P_{\gamma}^{\mu} = (k_{\text{max}}, 0, 0, k_{\text{max}})$ and $P_{N}^{\mu} =$ $(\frac{\sqrt{s_N N}}{2}, 0, 0, -\frac{\sqrt{s_N N}}{2})$, the central of mass energy per nucleon of γ - nucleon collisions is,

$$s_{\gamma N} = (k_{\text{max}} + \sqrt{s_{NN}}/2)^2 - (k_{\text{max}} - \sqrt{s_{NN}}/2)^2 = 2k_{\text{max}}\sqrt{s_{NN}}.$$
 (1)

On the other hand, according to the paper [1] the $k_{\text{max}} \approx \gamma \hbar c/R_A$, with the $\gamma = \sqrt{s_{NN}}/2m_p$, we can get the $\sqrt{s_{\gamma N}} = 894$ GeV for Pb-Pb collisions at $\sqrt{s_{NN}} = 5020$ GeV.

Virtuality dependent PDF

FIG. 6. The ρ wave functions $|\Psi^L|^2$ (left) and $|\Psi^T|^2$ (right) in the boosted Gaussian model with the quark mass used in the FKS dipole model.